

Feb 19-8:47 AM
A snowball melts and its surface area decreases at the rate of $1 \mathrm{~cm}^{2} / \mathrm{min} . \frac{d s}{d t}=-1$ At what rate its diameter decreases when the diameter is $10 \mathrm{~cm} \quad \frac{d D}{d t}=-$?

Surface Area of Sphere $S=4 \pi r^{2}$

$$
\begin{array}{ll}
S=4 \pi\left(\frac{D}{2}\right)^{2} & S=\pi D^{2} \\
\left.\begin{array}{l}
\frac{d S}{d t}=2 \pi D \frac{d D}{d t} \\
\text { it decreases } \\
-1
\end{array}\right)=2 \pi(10) \frac{d D}{d t}
\end{array} \underbrace{}_{\frac{d D}{d t}=\frac{d}{20 \pi} \mathrm{~cm} / \mathrm{min} .}
$$

\qquad

Street light is $15-\mathrm{ft}$ tall.
A 6 - ft tall person walks away from the Pd at the rate of $5 \mathrm{ft} / \mathrm{sec}$.
At what rate is the tip of his shadow moving when he/she is 40 ft from the Pole?

$$
\begin{array}{ll}
\text { Tip of } & \frac{d x}{d t}=5 \\
\text { shadow } & 15 y=6 y+6 x \\
\frac{d y}{d t}=\frac{2}{3} \cdot 5=\frac{10}{3} \mathrm{ft} / \mathrm{sec} . & 3 y=6 x \\
\text { For tip of the shadow } & y=\frac{2}{3} x \\
\frac{d}{d t}[y+x]=\frac{d y}{d t}+\frac{d x}{d t}=\frac{10}{3}+5 & \frac{d y}{d t}=\frac{2}{3} \cdot \frac{d x}{d t}
\end{array}
$$

\qquad

Oct 25-10:33 AM

$$
\begin{aligned}
& \text { A man starts walking north at } 4 \mathrm{ft} / \mathrm{sec} \text {. } \\
& \text { from a fixed point } P \text {. } \\
& 5 \text { minutes later, A woman going South @ } \\
& 5 \mathrm{ft} / \mathrm{sec} \text { from a point } 500 \mathrm{ft} \text { east of P. } \\
& \text { At what rate they are moving a part } 15 \text { min. } \\
& \text { after woman starts walking. } \\
& \frac{d m}{d t} 4 m \\
& z^{2}=(m+w)^{2}+500^{2} \\
& \begin{array}{l}
15 \text { miss } \rightarrow W \\
20 \because M
\end{array} \\
& 2 z \frac{d z}{d t}=\mathscr{2}(m+w)^{1} \cdot\left[\frac{d m}{d t}+\frac{d w}{d t}\right]+0 \\
& 9313 \frac{d z}{d t}=(4800+4500) \cdot[4+5] \frac{d z}{d t} \approx 8.987 \\
& \text { In } 15 \text { min } \rightarrow W=5 \cdot 15 \cdot 60=4500 \\
& \text { In 20 } \rightarrow M=4 \cdot 20 \cdot 60=4800 \\
& Z^{2}=(M+N)^{2}+500^{2} \\
& \begin{array}{l}
=(4800+4500)^{2}+500^{2} \\
=\sqrt{86740000} \quad Z \approx 9313
\end{array}
\end{aligned}
$$

Do Same thing for $f(x)=\frac{x^{2}-1}{x^{3}}$
$f(x)=\frac{x^{2}-1}{x^{3}} \quad$ Domain \rightarrow All Reals except 0 . $x-$ Int. $\rightarrow f(x)=0 \rightarrow x^{2}-1=0 \rightarrow x= \pm 1$
$\longrightarrow(1,0),(-1,0)$
No Y-Int since $x \neq 0$
$f(x)=\frac{x^{2}}{x^{3}}-\frac{1}{x^{3}} \quad F(x)=\frac{1}{x}-\frac{1}{x^{3}}$
$F(x)=x^{-1}-x^{-3}$
$f^{\prime}(x)=-x^{-2}+3 x^{-4}$
$f^{\prime \prime}(x)=2 x^{-3}-12 x^{-5}$

Oct 24-11:27 AM

$$
\begin{array}{ll}
f^{\prime}(x)=-x^{-2}+3 x^{-4} \rightarrow f^{\prime}(x)=\frac{-1}{x^{2}}+\frac{3}{x^{4}} \\
f^{\prime \prime}(x)=2 x^{-3}-12 x^{-5} & f^{\prime}(x)=\frac{-x^{2}+3}{x^{4}} \\
f^{\prime \prime}(x)=\frac{2}{x^{3}}-\frac{12}{x^{5}} & f^{\prime}(x)=\frac{3-x^{2}}{x^{4}} \\
f^{\prime \prime}(x)=\frac{2 x^{2}-12}{x^{5}} & f^{\prime \prime}(x)=\frac{2\left(x^{2}-6\right)}{x^{5}}
\end{array}
$$

Oct 25-11:08 AM
$f(x)=\frac{x^{2}}{x^{2}+3} \quad$ Domain: All Real\# 1

$$
x-\text { Int } \rightarrow f(x)=0 \rightarrow x^{2}=0 \rightarrow x=0 \rightarrow(0,0)
$$

$$
Y-\text { Int } \rightarrow x=0 \rightarrow \frac{0^{2}}{0^{2}+3}=0 \rightarrow(0,0)
$$

$$
\text { find } \underbrace{f(-x)}_{\substack{\text { symmetric } \rightarrow Y-0}}=\frac{(-x)^{2}}{(-x)^{2}+3}=\frac{x^{2}}{x^{2}+3}=\tau_{\text {even }} \text { function }
$$

symmetric \rightarrow Y-axis.

$$
\begin{aligned}
& f^{\prime}(x)=\frac{3-x^{2}}{x^{4}} \quad f^{\prime}(x)=0 \rightarrow 3-x^{2}=0 \rightarrow x= \pm \sqrt{3} \\
& \begin{array}{cl}
f^{\prime \prime}(x)=\frac{2\left(x^{2}-6\right)}{x^{5}} \quad & \begin{array}{l}
f^{\prime}(x) \text { undefined } \rightarrow x=0 \\
\\
\\
\\
\\
\\
\\
\\
\\
f^{\prime \prime}(x)=0 \rightarrow x^{2}-6=0 \rightarrow x= \pm \sqrt{6} \\
\end{array} \text { undefined } \rightarrow x=0
\end{array} \\
& \\
& \text { try } f(x)=\frac{x^{3}}{x^{2}+1}
\end{aligned}
$$

find $f^{\prime}(x)$
$f(x)=\frac{x^{2}}{x^{2}+3}=\frac{x^{2}+3-3}{x^{2}+3}=\frac{x^{2}+3}{x^{2}+3}-\frac{3}{x^{2}+3}$
$f(x)=1-\frac{3}{x^{2}+3} \quad f(x)=1-3\left(x^{2}+3\right)^{-1}$ $f^{\prime}(x)=0+3\left(x^{2}+3\right)^{-2} \cdot 2 x \quad f^{\prime}(x)=\frac{6 x}{\left(x^{2}+3\right)^{2}}$
$f^{\prime}(x)=6 x\left(x^{2}+3\right)^{-2}$
$f^{\prime \prime}(x)=6\left[1 \cdot\left(x^{2}+3\right)^{-2}+x \cdot-2\left(x^{2}+3\right)^{-3} \cdot 2 x\right]$
$=6\left[\left(x^{2}+3\right)^{-2}-4 x^{2}\left(x^{2}+3\right)^{3}\right]$
$=6\left(x^{2}+3\right)^{-3}\left[\left(x^{2}+3\right)^{1}-4 x^{2}\right]$

$$
\begin{aligned}
& =6\left(x^{2}+3\right)^{-2}\left(3-3 x^{2}\right) \\
f^{\prime \prime}(x) & =\frac{18\left(1-x^{2}\right)}{\left(x^{2}+3\right)^{3}}
\end{aligned}
$$

Oct 25-11:19 AM

$$
\begin{aligned}
& f^{\prime}(x)=\frac{6 x}{\left(x^{2}+3\right)^{2}} \quad \begin{array}{l}
f^{\prime}(x)=0 \rightarrow 6 x=0 \rightarrow x=0 \\
f^{\prime}(x) \text { is always defined }
\end{array} \\
& f^{\prime \prime}(x)=\frac{18\left(1-x^{2}\right)}{\left(x^{2}+3\right)^{3}} \quad \begin{array}{c}
x^{2}+3 \neq 0 \\
f^{\prime \prime}(x)=0 \rightarrow 8\left(1-x^{2}\right)=0 \\
\rightarrow x= \pm 1
\end{array} \\
& f^{\prime \prime}(x) \text { is always defined } \\
& \begin{array}{c|c|c|c}
x & -1 & 0 \\
\hline f^{\prime}(x) & -1 & -1 & + \\
f^{\prime \prime}(x) & -1 & + & + \\
\hline
\end{array}
\end{aligned}
$$

